In immunohistochemical (IHC) classification of DLBCL into CGB and non-CGB subtypes to predict survival after chemoimmunotherapy at the Vener de la Victoria University Hospital.

Results: The percentage of GCB and non-GCB subtypes was 54% and 46%, respectively. After a median follow-up of 37 months, the median progression-free survival (PFS) according to the Hans algorithm was progression-free survival (PFS) according to the Hans algorithm was 2 years OS: 72% vs. 68%), not statistically significant (p — 0.661). Despite of being a retrospective study and the low median follow-up of patients, in CGB subtype there was a trend towards better overall survival in CGB group, p = 0.177. Despite the fact that it's not easily applicable in clinical practice. Several IHC algorithms have been developed to assign patients into GCB and non-GCB/ABC subtypes.

Methods: We retrospectively analyzed 142 patients diagnosed de novo DLBCL from 1999 to 2017 at our Hospital treated with chemoimmunotherapy. DLBCL was classified using the Hans algorithm into GCB and non-GCB subtypes. The primary red point was prognostic-free survival (PFS) according to the Hans algorithm, that it was estimated by the Kaplan-Meier method.

Results: The percentage of GCB and non-GCB subtypes was 54% and 46%, respectively. After a median follow-up of 37 months, the median progression-free survival was 100 months in the global population. No significant differences were found in PFS, although there was a trend to favor GCB subtype. In total, 73% were GCB group and 8% were non-GCB group, with a median of 60 months in GCB group and not reached in non-GCB group (p = 0.771). Disease free survival was not significantly different (p = 0.816).

Conclusions: In our study there is a lack of evidence supporting the use of the Hans algorithm for stratifying patients into distinct prognostic groups, probably due to the lack of low median follow-up. Faster, GEP remains the preferred method for predicting prognosis. IHC for subclassification of DLBCL is feasible and reproducible, but the harmonization of techniques and centralized consensus review is necessary.

Legal entity responsible for the study: Laura Galvez Carvajal.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

1038P PET-CT as a prognostic factor in patients with early stages in primary diagnosed Hodgkin lymphoma

J. Pospischil1, O. Novosel1, I. Putilashvili2, I. Kadzokil2, G. Gotfried3, Y. Kremen2, O. Kasparova1, I. Makhlakova2, E. Lukani2, V. Kapul2, N. Nosulik2, O. Oblikhecenko3, N. Kozulkina2, O. Tkachenko1, O. Kharlampova1, V. Ivanenko1, O. Kikuch1

1Cancer Hematology, National Cancer Institute of the MPH Ukraine, Kiev, Ukraine.
2Experimental Oncology, National Cancer Institute of the MPH Ukraine, Kiev, Ukraine.
3Radiology, Clinical Hospital "Medicall", Kiev, Ukraine.
4Hematology, Clinical Hospital "Medicall", Kiev, Ukraine.
5Hematology, Oncology Clinic "Innovation", Kiev, Ukraine.

Background: Nowadays, there are different guidelines in diagnostics and PET-CT guided treatment of lymphomas. But questions about benefits and predictive role of PET-CT in pts with early-stage Hodgkin lymphoma (HL) still remain debate. Here we report results of Ukrainian multicenter retrospective study about the role of PET-CT in early-stage HL pts.

Methods: 36 patients, with stages I-II, were registered in the study between August 2012 and Feb 2014 in 9 Ukrainian hematological centers. Metabolic PET-CT imaging was performed according to standard protocols. The threshold of positivity was set for a residual uptake higher than 2 times the liver background. (18F) in 56% (n = 20). Patients were treated with ABVD or BEACOPP esc regimens based on risk group. The primary endpoint was event-free survival (EFS), defined as disease progression or death from HL.

Results: Median age of patients at diagnosis was 29 years (range 18-50), 16 (28.5%) male and 40 (71.5%) pts were female. Bulky disease (> 10 cm in any dimension) were presented in 6/56 (10.7%) of pts, B symptoms — in 16/56 (28.5%) and extranodal disease in 3/56 (5.4%). Among them, 37/56 (60%) pts were PET+2-1 (54%) PET-signal negative PET+2 (p < 0.005). There were no unexpected deaths from the refractory disease. We did not find any significant difference between EFS rate in pts with PET+2 vs PET2-1 (log-rank test, p = 0.48). 46 pts have proceeded for end-of-treatment PET-CT (PET condemnation). Results showed 11/46 (23.9%) were PET+2 and 35/46 (76.1%) PET2-1 (p < 0.005). EFS was compared and assessed depending on DS. Achieved rate of 3-year EFS in pts with PET+2 was 2-1 2, 3 and DS 1-4 were 4%, 5% and 9%, respectively (p < 0.005).

Conclusions: End of treatment PET-CT plays an important role in patients with early-stage HL, and could be a beneficial prognostic factor. However, there is still need for prospective confirmation of interim PET-CT as a prognostic factor.

Legal entity responsible for the study: Tetiana Skypets.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

1039P Assessment to predict survival and risk of progression in patients with newly multiple myeloma in different age groups

O. Novosel, K. Uliankhongo, T. Skypets, T. Kadzokil

Onco-Hematology, National Cancer Institute of the MPH Ukraine, Kiev, Ukraine.

Background: Treatment options and outcomes for multiple myeloma (MM) pts were greatly changed over the last 10 years. Treatment according to different age groups requires careful considerations in order to achieve an adequate response and acceptable tolerance.

Methods: 100 pts median age 63, range 40-80, mm 53, 67 were registered in NCI from Jan 2006 to Jan 2018. 194 (191/00) of patients received M2, MP, DAV therapy (group), 409 (404/00) — bortezomib-based (group) and 399 (399/00) — PI-based regimens (group). In 29% patients (41, 6/6), and 41/6 (37) were assessed. The primary endpoint was EFS and OS.

Results: Median age of patients at diagnosis was 29 years (range 18-50), 16 (28.5%) male and 40 (71.5%) pts were female. Bulky disease (> 10 cm in any dimension) were presented in 6/56 (10.7%) of pts, B symptoms — in 16/56 (28.5%) and extranodal disease in 3/56 (5.4%). Among them, 37/56 (60%) pts were PET+2-1 (54%) PET-signal negative PET+2 (p < 0.005). There were no unexpected deaths from the refractory disease. We did not find any significant difference between EFS rate in pts with PET+2 vs PET2-1 (log-rank test, p = 0.48). 46 pts have proceeded for end-of-treatment PET-CT (PET condemnation). Results showed 11/46 (23.9%) were PET+2 and 35/46 (76.1%) PET2-1 (p < 0.005). EFS was compared and assessed depending on DS. Achieved rate of 3-year EFS in pts with PET+2 was 2-1 2, 3 and DS 1-4 were 4%, 5% and 9%, respectively (p < 0.005).

Conclusions: End of treatment PET-CT plays an important role in patients with early-stage HL, and could be a beneficial prognostic factor. However, there is still need for prospective confirmation of interim PET-CT as a prognostic factor.

Legal entity responsible for the study: Tetiana Skypets.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.