The dentin pulp complex responds to the microorganism’s invasion into deep layers of the dentin by the formation of tertiary dentine, which is a protective barrier, since it reduces the diffusion of the latter in the direction of the pulp [7, 10]. However, the feature of the pulp of deciduous teeth is in its insignificant functional ability to produce dentin substitute, due to the minimum expressed protective and adaptive properties. At the same time, according to [9] the deciduous teeth pulp is quite often in a state of chronic
inflammation, which is represented by a chronic inflammatory exudate, including lymphocytes, macrophages and plasma cells. In some cases pulp recovery is possible, which, however, is a long-term process and depends on many factors, such as the overall state of the child’s health, virulence of microorganisms, the possibility of the regenerative potential of the pulp, etc. Therefore, predicting lesions in pulp in the presence of dental caries, especially in the deciduous teeth, is quite difficult [1, 12].

The purpose of the paper was to study morphological lesion of the dental pulp in experimental dental caries of various severity in rats with theoretical rationale of the pulpitis treatment principles.

Materials and methods. The total of 50 outbred albino male rats aged ≈30 days weighing 35-40 g were involved into the study. Experimental dental caries in rats was induced by special cariesogenic diet, including: 54.0% saccharose, 18.5% cow cheese, washed under tap water and dried to solid state; 18.5% white bread crackers; 5% sunflower oil; 4 g sodium chloride and 1 dragee of the multivitamin complex “Undevit” per 100 g of feed. Under conditions of the diet, the animals were kept for 168 days with a gradual withdrawal from the experiment by the method of chloroform anesthesia overdose. The biological material was taken on the 28, 42, 56, 84, 98, 112, 126, 140, 154 and 168th day of the experiment and in the amount of 5 animals at each stage. Animal housing and experiments on them have been carried out in compliance with requirements of international principles of the “European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes” (Strasbourg, 1985), and “General Ethic Rules for Conducting Experiments on Animals”, adopted by the I National Congress on Bioethics (Kyiv, 2001).

Determination of morphological changes in different parts of the tooth was carried out in two stages. At the first stage, the depth of carious lesions of the enamel and dentin was measured, which was carried out on the removed non-decalcified jaws with molar and premolar, affected by caries. At the same time a crown of the tooth was cut with a special diamond cutter and stained histochemically with PAS-Alcian blue. This method enables clear distinction between the enamel, dentin and carious lesions. The second stage was performed on decalcified blocks of teeth. After fixation in 10% neutral formalin and paraffin, serial sections were made from the resulting blocks, stained with hematoxylin and eosin. The obtained preparations were used for study of morphological changes of the dental pulp which were observed at superficial, medium and deep dental caries. Decalcified, not affected by dental caries teeth of 5 rats served as the controls.

Results of the study and their discussion. The carious process was observed mainly on molars of experimental animals with varying degrees of damage to enamel and dentin. The enamel caries at the stage of the spot developed mainly on 28-56 days, the medium dentin caries on 70-98 days, deep dentin caries without perforation of the pulp chamber on 112-140 days, deep dentin caries with perforation of the pulp chamber on 154-168 days. The caries process developed on both proximal and chewing surfaces of the molars.

In superficial caries in the coronal region of the pulp a capillary hyperemia in the subodontoblastic plexus was noted with sporadic stasis. The main substance of the loose connective tissue of the central region of the pulp adjacent to the vessels was somewhat loosened, swollen. Between the odontoblasts small gaps were found, which were formed due to moderate edema of the stroma of the peripheral region of the pulp. In the root part of the pulp a moderate hyperemia in capillaries was noted without stasis. No pronounced structural changes in the odontoblasts of the root pulp that were located at the root of the pulp were found (fig. 1).

---

Fig. 1. Coronal pulp lesions in superficial dental caries. H&E stain.400x magnification.
1 – hyperemia in capillaries; 2 – edema in the interodontoblastic space; 3 – edema in subodontoblastic layer of the pulp.

Fig. 2. Coronal pulp lesions in medium dental caries. H&E stain.400x magnification.
1 – hemorrhage in the central region of the pulp; 2 – edema of the main substance of the central region of the pulp; 3 – moderate edema of the supraodontoblastic space.
Histological changes in the pulp in medium caries were manifested by vascular hyperemia and stasis. In some vessels of the central region of the coronary pulp the hyaline, less often erythrocytic thrombi, were formed. In addition, in the central and peripheral region of the pulp diapedetic hemorrhages were visualized.

The main substance of the loose connective tissue of the pulp was swollen, especially in the coronal part. Moreover, in this part sporadic minor cellular infiltrations were visualized, mainly by lymphocytes, plasmacytes and single neutrophils. A significant amount of transudate was accumulated in the supraodontoblastic space, between individual odontoblastic processes. In the areas of the projection of carious cavity the odontoblasts underwent necrotic lesions, localized in separate groups. The predentin was loosened, the odontoblastic processes were often destroyed (fig. 2).

A moderate vascular hyperemia, a minor mixed-cell inflammatory infiltration with no stasis was observed in the root pulp. Slightly pronounced proliferative odontoblastic processes and an increase in the number of preodontoblasts were detected. The remaining odontoblasts had an oblique or vertical orientation.

In deep caries of the approximal surfaces (without perforation), signs of acute serous pulpitis, accompanied by severe necrotic lesions of the odontoblasts, with disorganization of the peripheral layer of the pulp were revealed in the pulp. Inflammatory hyperemia, stasis, marginal standing of the neutrophilic granulocytes, hyaline, erythrocytic thrombi, extensive hemorrhages, edema of the supraodontoblastic space with the destruction of the odontoblastic processes was found in the vessels. Mainly hyperemia, stasis, isolated erythrocytic or hyaline thrombi, diapedetic hemorrhages were found in the root pulp. The coronal and root pulp stroma was focally infiltrated with lymphocytes, plasma cells, neutrophilic granulocytes, macrophages. In addition, deep carious lesions of the approximal surfaces of molars without perforations of the pulp cavity, inflammation in the pulp and sites, adjacent to the zone of carious destruction of the dentin were more pronounced in comparison with the level of inflammation, which was observed in the deep carious lesions of the occlusive surfaces of the molars (fig. 3).

Fig. 3. Root pulp lesions in deep approximal caries. H&E stain. 1000× magnification.
1 – vascular hyperemia; 2 – stasis; 3 – edema of the supraodontoblastic space; 4 – destruction of the odontoblastic processes; 5 – necrobiotic lesions of the odontoblasts.

Fig. 4. Pulp lesions in deep dental caries with perforation. H&E stain. 400× magnification.
1 – the zone of dentin destruction; 2 – necrosis and diffuse leukocytic infiltration of the pulp.

On 154-168 days, a deep caries with perforation in the pulp chamber developed, accompanied by the development of purulent inflammation, passing from the coronal part of the pulp to the root part of the pulp and resulted in pulp gangrene (fig. 4).

The findings of the present experimental study are in concordance with the findings of the study [8], which compares the level of inflammatory pulp reaction in occlusal and deep approximal caries in deciduous molars of children.

Currently, pulp-preserving methods of treating deep carious lesions [7] by partial dentin excavation and indirect pulp coverage is tending to increase globally, therefore, it is recommended to take into account the localization of carious lesion, its depth and the state of the dental pulp. The latter criterion can be judged by the findings of our experimental study.

The resulting data on the experimental animals have found that in the deep carious lesions of molars without perforation of the pulp cavity, morphological changes in the pulp of molars were more pronounced in the presence of deep carious lesions of approximal surfaces in comparison with morphological changes observed in the presence of deep caries of chewing surfaces. This indicates the potential occurrence of more frequent complications in the conservative treatment of deep carious lesions of approximal surfaces in comparison with deep lesions of chewing surfaces.
In most studies, the method of indirect coating of dental pulp with sparing preparation of caries-modified dentin (one-stage or two-stage) is considered to be more rational and predictable approach to preserving the vitality of pulp tissues in the long term than the method of radical preparation of carious cavity, in which the opening of a horn of pulp occurs in most cases. Some publications report even about the possibility of almost complete preservation of caries-modified dentin with the isolation of the carious cavity only within the limits of the enamel [5, 11]. However, basically, these studies were conducted with the localization of carious cavities of Blake’s Class I, which doubts the success and rationality of using this approach in the localization of deep carious lesions on the approximal surfaces, especially when it comes to deciduous teeth [6].

In this connection, when choosing the method of treatment of deep carious lesions of deciduous teeth, it is necessary to take into account the localization of the carious process and reasonably choose the method of treatment.

Conclusion

The intensity of dental caries and localization of deep carious lesions are important factors in the prediction of the effectiveness of conservative treatment of deep carious lesions. Dental pulp carious lesion depends not only on the degree of carious process, but also on its localization, which should be taken into account when choosing the optimal method of treatment of dental caries, which also prevents the development of its complications.

References

2. Sheshukova OV, Trufanova VP. Pоказаны ураженя непародного кариеса за его услажденныя в дитей у регионі з високим
3. Smolyar NL, Solono GM. Chastota uskladnenogo kariyesu molochnyh zubiv v ditej, yakym provodylas sanaciya pid zagalnym
6. Kassa D, Day P, Hjgh A, Duggal M. Histological comparison of pulpal inflammation in primary teeth with occlusal or proximal
7. Thompson V, Craig RG, Curro FA, Green WS, Ship JA. Treatment of deep carious lesions by complete excavation or partial
8. Kassa D, Day P, High A, Duggal M. Histological comparison of pulpal inflammation in primary teeth with occlusal or proximal
11. Thompson V, Craig RG, Curro FA, Green WS, Ship JA. Treatment of deep carious lesions by complete excavation or partial
The article presents the results obtained in the experiment on 40 white rats aimed at investigating the influence of ammonium pyrrolidine dithiocarbamate (APDTC), an inhibitor of the nuclear translocation of the transcription factor κB (NF-κB), on the depolymerization of collagen, proteoglycans and sialoglycoproteins in extracellular matrix of soft and osseous tissues under modeled systemic inflammatory response (SIR). The latter was induced by intraperitoneal administration of lipopolysaccharide Salmonella typhi (pyrogenalum) in a dose of 0.4 μg/kg of weight 3 times during the first week, and once a week for the following 7 weeks. It has been shown the SIR simulation is accompanied by activation of the collagenolysis as well as depolymerization of proteoglycans and sialoglycoproteins in the tissues of the gum, periodontal ligament and alveolar process of the jaws as evidenced by a considerable increase in the concentration of free hydroxyproline, glycosaminoglycans and N-acetylneuraminic acid. The application of APDTC during SIR significantly reduces the depolymerization of collagen, proteoglycans and sialoglycoproteins in soft and bone periodontal tissues, and limits the degree of resorption of the jaw alveolar process. This allows us to conclude the application of APDTC during SIR significantly reduces the depolymerization of collagen, proteoglycans and sialoglycoproteins in extracellular matrix of soft and osseous tissues under modeled systemic inflammatory response induced with LPS.

The work is a part of the research project “The role of reactive oxygen species, nitric oxide system and transcriptional factors in the mechanisms of pathological systemogenesis”, state registration No. 0114U004941.

The purpose of the study was to investigate the effect of ammonium pyrrolidine dithiocarbamate (APDTC), an inhibitor of the nuclear translocation of the transcription factor κB (NF-κB), on the depolymerization of collagen, proteoglycans and sialoglycoproteins in extracellular matrix of soft and osseous tissues in periodontium of rats under modeled systemic inflammatory response induced with LPS Salmonella typhi.

Materials and methods. The series of the experiment were performed on 30 white male Wistar rats weighing 180-220 g, which were divided into 3 groups (with 10 animals in each group): the 1st group included intact animals, the 2nd group included rats, which were subjected to the systemic administration of LPS (pyrogen, Medgamal, Russia), and the 3rd group consisted of the animals, which received APDTC (manufactured by Sigma-Aldrich, Inc., USA) intraperitoneally in a dose of 76 mg/kg 3 times a week.

© A.M. Yelinska, S.V. Denisenko, 2020